

Стержневые изоляторы 3FL могут быть использованы в качестве поддерживающих или натяжных изоляторов

3FL – превосходная конструкция, отвечающая самым высоким требованиям

Использование силиконового каучука HTV обеспечивает превосходные рабочие характеристики в условиях загрязнения

Силиконовые стержневые изоляторы 3FL – надежная работа и долговечность

Веские основания для выбора 3FL

Новые силиконовые стержневые изоляторы типа 3FL от компании Siemens обладают высочайшими параметрами электрической изоляции и механической прочности при растяжении, при этом их конструкция является компактной и легкой. Благодаря своему исключительному дизайну и минимальному весу стержневые изоляторы 3FL как нельзя лучше подходят для воздушных компактных линий, где необходимо использовать низкую башню и короткие линейные переходы. Кроме того, они являются более экономичными при транспортировке и монтаже.

Конструкция

Корпус изолятора 3FL изготовлен из монолитного силиконового каучука HTV1, полученного в процессе одностадийного литьевого формования. Силикон HTV отливается непосредственно на центральный стержень путем перекрытия узла тройника и части металлической соединительной арматуры. Конструкция обеспечивает полное покрытие наиболее чувствительной части силиконового изолятора - области перехода (металлическая соединительная арматура /стеклопластиковый стержень/силиконовый корпус), где обычно концентрируется электрическое поле с максимальной напряженностью. Такая система перекрытия исключает необходимость использования традиционных систем герметизации и одновременно обеспечивает защиту от проникновения влаги.

Магнитопровод

Центральный магнитопровод изготовлен из безборного коррозионно-стойкого стеклопластикового стержня из ECR-стекла² (стеклопластиковый стержень). Учитывая чрезвычайно высокую стойкость стеклопластикового стержня к гидролизу и кислотам, применение 3FL изоляторов полностью исключает риск так называемого хрупкого излома.

Соединительная арматура

Соединительная арматура, изготовленная из горячеоцинкованной прокованной стали или кованого чугуна, крепится непосредственно на стеклопластиковый стержень с использованием технологии кольцевой обжимки. Каждая операция обжимки проходит жесткий контроль с применением специальной системы мониторинга. Полный перечень соединительной арматуры в соответствии с последними выпусками стандартов IEC и ANSI отвечает требованиям до 120 кН SML. Изоляторы 3FL являются взаимозаменяемыми на 100% и полностью совместимыми с существующими изоляторами и линейной арматурой любого типа.

Специальная конструкция соединительной арматуры в зоне перехода минимизирует напряженность электрического поля и соответственно частичные разряды в зоне перехода, а также на поверхности силиконового корпуса путем использования встроенного кольца, выравнивающего распределение потенциала. Это обеспечивает надежную защиту изоляционного материала от коррозии и исключает вероятность последующего отказа изолятора.

Изоляторы 3FL – корпус из силиконового каучука HTV обеспечивает высокие рабочие характеристики в условиях загрязнения

Превосходные характеристики слоя силиконового каучука HTV относительно загрязнения обеспечивают максимальную надежность 3FL изолятора, даже при работе в особо тяжелых условиях эксплуатации. Полностью водоотталкивающий корпус предотвращает образование проводящей пленки на поверхности. Даже самые суровые условия эксплуатации, такие как соляной туман в прибрежных районах или пыльный воздух в промышленных регионах, не могут ухудшить гидрофобность, свойственную силиконовому каучуку HTV. Поверхностные токи и разряды при этом отсутствуют. Наличие воды или грязи на поверхности корпуса не может привести к возникновению разряда на поверхности изолятора, что является важным условием его работы.

Качество, обеспечиваемое компанией Siemens

В соответствии со сложившимися за долгие годы работы (более ста лет) традициями и опытом компании Siemens в области изготовления высоковольтного оборудования каждая производственная операция, выполняемая для 3FL изоляторов — начиная с многочисленных проверок сырья, за которыми следует сборка отдельных компонентов, и заканчивая приемосдаточными испытаниями готовой продукции — подвергается строгому мониторингу и контролю.

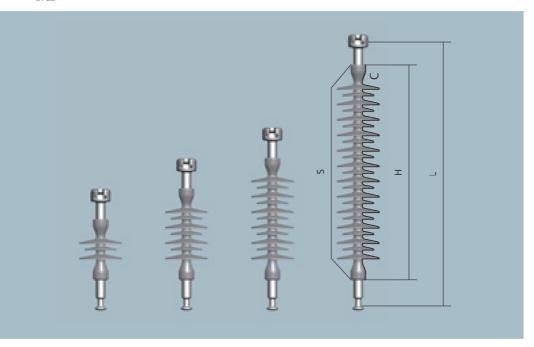
Все типы соединительной арматуры в соответствии с IEC 61466-1, IEC 60120 и IEC 60471 отвечают требованиям до 120 кH

Производственные стандарты									
IEC 61109	Изоляторы для воздушных линий – композитные поддерживающие и натяжные изоляторы для систем переменного тока с номинальным напряжением более 1 000 В – определения, методы испытаний и критерии приемки								
IEC 62217	Полимерные изоляторы для внутреннего и наружного применения при номинальном напряжении более 1 000 В – общие определения, методы испытаний и критерии приемки								
IEC 60815	Выбор и определение размеров высоковольтных изоляторов, предназначенных для использования в условиях загрязнения								
IEC 61466-1	Блоки композитных гирляндных изоляторов для воздушных линий с номинальным напряжением более 1 000 В – Часть 1: Классы со стандартной стойкостью и соединительная арматура								
IEC 61466-2	Блоки композитных гирляндных изоляторов для воздушных линий с номинальным напряжением более 1 000 В — Часть 2: Размеры и электрические параметры								
IEC 60120	Размеры шаровых и гнездовых соединений блоков гирляндных изоляторов								
IEC 60471	Размеры шарнирных и шпунтовых соединений блоков гирляндных изоляторов								

Предельные значения		3FL2	3FL4
Максимальное напряжение для оборудования U_{m}	кВ	72,5	170
Номинальное напряжение системы $\emph{U}_{ extsf{n}}$	кВ	69	154
Расчетная механическая нагрузка (SML)	кН	70	120
Минимальный унифицированный расчетный путь тока утечки	мм/кВ _т	31	31

Стандарты и испытания

Все стержневые изоляторы 3FL разработаны и испытаны в соответствии с последними редакциями стандартов IEC 61109, IEC 62217, IEC 60815 и IEC 61466-2. Они успешно прошли все конструкторские и типовые испытания.


Каждый выходящий с завода Siemens 3FL изолятор проходит приемосдаточные испытания при воздействии соответствующей механической растягивающей нагрузки, составляющей не менее 50% от номинальной SML нагрузки в течение минимум 10 секунд.

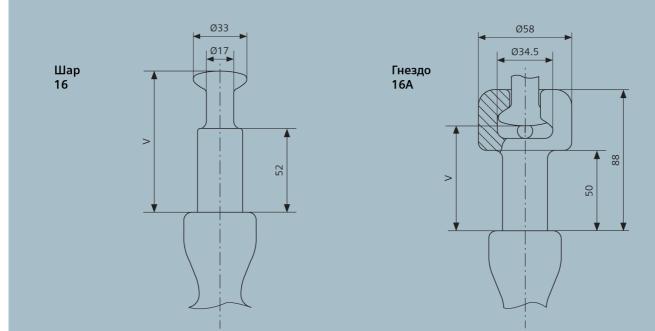
Вспомогательное оборудование

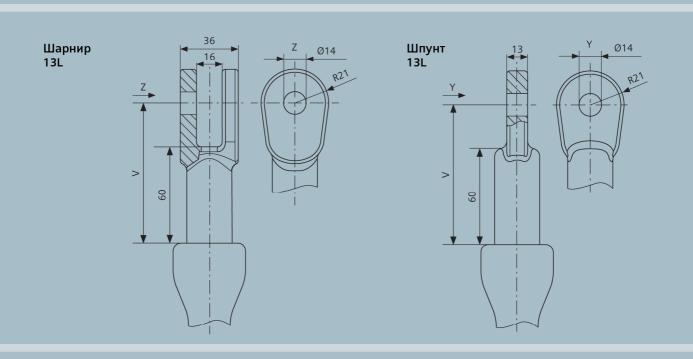
В качестве стандартных решений для снижения последствий воздействия поля/коронного разряда существуют устройства для защиты изоляторов от дуги, такие как дугогасящие рога и коронирующие кольца (также известные, как кольца, выравнивающие распределение потенциала). По запросу могут быть реализованы варианты в соответствии с требованиями заказчика, а также другие конструкции соединений и кабельных прижимов.

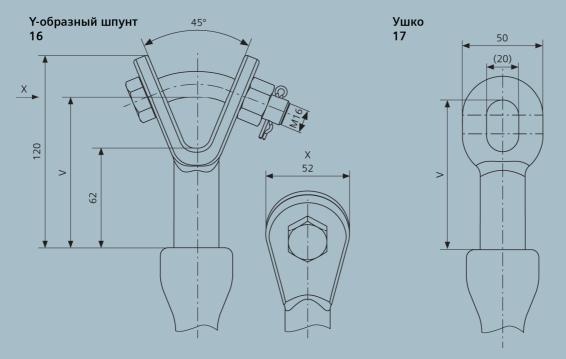
¹ HTV: Высокотемпературная вулканизация

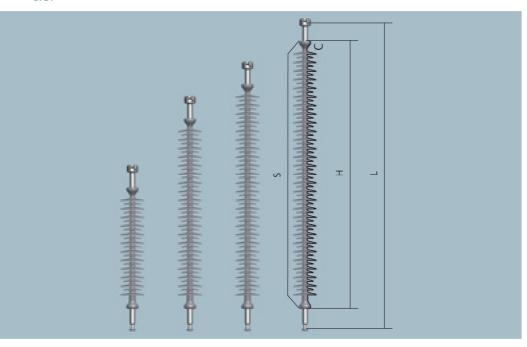
² ECR-стекло: Электро- и коррозионно-стойкое стекло

Стержневые изоляторы 3FL2 для распределительных воздушных линий электропитания


Стержневые изоляторы 3FL2 разработаны в соответствии с самыми высокими требованиями распределительных систем электропитания до 72 кВ. Они обладают высокими показателями по выдерживаемому напряжению грозового импульса и промышленной частоты, а также классу длинного пути утечки ($\mathbb I$ 31 мм/кВ). В наличии имеются изоляторы 3FL2 с механическими характеристиками до SML = 70 кН.


Соединительная арматура с SML = 70 кH									
Обозначение согласно стандарту	Стандарт	Длина соединения							
Название /размер		V, MM							
Шар 16	IEC 60120	75							
Гнездо 16А	IEC 60120	79							
Шарнир 13L	IEC 60471	87							
Шпунт 13L	IEC 60741	87							
Ү-образный шпунт 16	IEC 61466-1	94							
Ушко 17	IEC 61466-1	93							

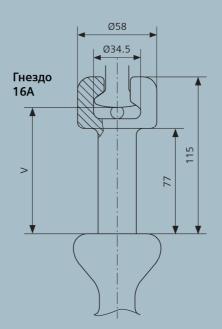

Технические характеристики 3FL2												
Макси- маль- ное напря- жение для обору- дова- ния	Типовые номиналь- ные напря- жения системы	Номи- нальное * импульсное выдержива- емое напря- жение при ударах молнией (1,2/50 мкс)	Номи- нальное * выдержи- ваемое напря- жение частоты сети (50 Гц, 1 мин)	Рас- стоя- ние пере- кры- тия	Длина пути тока утечки	Длина кор- пуса	Длина секции ** (с шари- ком и гнез- дом)	Каталожный номер	Расчет- ная меха- ничес- кая нагруз- ка	Нагруз- ка при приемо сдаточ- ных испыта- ниях	Диа- метр коро- нирую щего кольца	Вес (с ша- риком и гнез- дом)
Um кВ	Un кВ	LIWL мин. кВ	PFWL мин. кВ	S MM	С	Н мм	L MM		SML κΗ	RTL кН	D MM	W KF
12,0	10, 11, 12	95	28	214	420	178	332	3FL2-009-4xx00-1xx1	70	35	-	1,6
24,0	15, 20, 22, 24	145	50	304	799	268	422	3FL2-014-4xx00-1xx1	70	35	-	2,0
36,0	30, 33, 35, 36	170	70	394	1178	358	512	3FL2-017-4xx00-1xx1	70	35	-	2,4
72,5	60, 66, 69, 72	325	140	664	2315	628	782	3FL2-032-4xx00-1xx1	70	35	-	3,55


Значения номинального напряжения при ударе молнии и выдерживаемого напряжения промышленной частоты в соответствии IEC 60071.
Физическое значение выше.

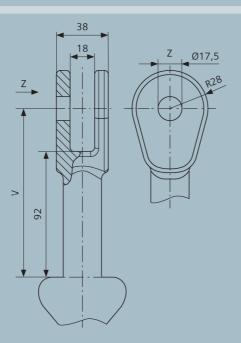
^{**} Справочное значение длины секции изолятора для варианта с шаровой и гнездовой соединительной арматурой размера 16 в соответствии с IEC 60120. Для получения длины секции изолятора с другой соединительной арматурой необходимо сложить длину корпуса и длины обеих соединительных приспособлений (см. таблицу «Соединительная арматура»). Все электрические значения относятся к изолятору без дугогасящих рогов или коронирующих колец.

Стержневые изоляторы 3FL4 для воздушных линий электропередачи

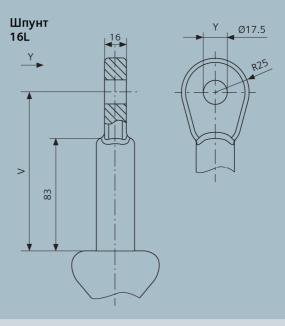

Стержневые изоляторы 3FL4 разработаны в соответствии с самыми высокими требованиями систем электропередачи до 170 кВ. Они обладают высокими показателями по классу длинного пути утечки (! 31 мм/кВ), а также по выдерживаемому напряжению грозового импульса и промышленной частоты. В наличии имеются изоляторы 3FL4 с механическими характеристиками до SML = 120 кН.

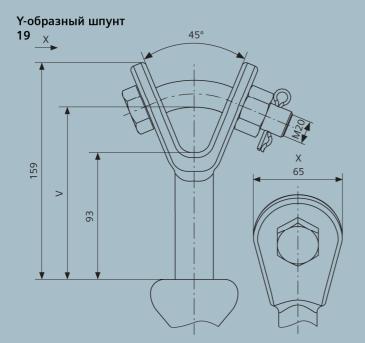

Соединительная арматура с SML = 120 кН									
Обозначение согласно стандарту	Стандарт	Длина соединения							
Название /размер		V, мм							
Шар 16	IEC 60120	102							
Гнездо 16А	IEC 60120	106							
Шарнир 16L	IEC 60471	123							
Шпунт 16L	IEC 60741	116							
Ү-образный шпунт 19	IEC 61466-1	126							
Ушко 24	IEC 61466-1	140							

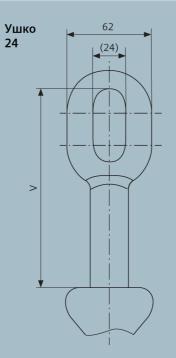
Техниче	Технические характеристики 3FL2											
Макси- маль- ное напря- жение для обору- дова- ния	Типовые номиналь- ные напря- жения системы	Номи- нальное * импульсное выдержива- емое напря- жение при ударах молнией (1,2/50 мкс)	Номи- нальное * выдержи- ваемое напря- жение частоты сети (50 Гц, 1 мин)	Рас- стоя- ние пере- кры- тия	Длина пути тока утечки	Длина кор- пуса	Длина секции ** (с шари- ком и гнез- дом)	Каталожный номер	Расчет- ная меха- ничес- кая нагруз- ка	Нагруз- ка при приемо сдаточ- ных испыта- ниях	Диа- метр коро- нирую щего кольца	Вес (с ша- риком и гнез- дом)
Um кВ	Un кВ	LIWL мин. кВ	PFWL мин. кВ	S MM	С мм	Н	L MM		SML кН	RTL кН	D MM	W KF
72,5	60, 66, 69, 72	325	140	674	2325	638	846	3FL4-032-4xx00-1xx1	120	60	-	3,8
123,0	110,115, 120	550	230	1034	3841	998	1206	3FL4-055-4xx00-1xx1	120	60	-	5,3
145,0	132, 138	650	275	1214	4599	1178	1386	3FL4-065-4xx00-1xx1	120	60	260	6,1
170,0	150, 154	750	325	1439	5546	1403	1611	3FL4-075-4xx00-1xx1	120	60	260	7,1


Значения номинального напряжения при ударе молнии и выдерживаемого напряжения промышленной частоты в соответствии IEC 60071.
Физическое значение выше.

^{**} Справочное значение длины секции изолятора для варианта с шаровой и гнездовой соединительной арматурой размера 16 в соответствии с IEC 60120. Для получения длины секции изолятора с другой соединительной арматурой необходимо сложить длину корпуса и длины обеих соединительных приспособлений (см. таблицу «Соединительная арматура»). Все электрические значения относятся к изолятору без дугогасящих рогов или коронирующих колец.







79

Ø17 **▼・**▶

Издание и авторские права © 2011: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Эрланген, Германия

Siemens AG Сектор энергетики Отдел передачи электроэнергии Высоковольтное оборудование Nonnendammallee 104 13629 Berlin, Germany www.siemens.com/energy/insulators

За дополнительной информацией обращайтесь в наш центр поддержки клиентов.

Тел.: +49 30 386 33 222 Факс: +49 30 386 26 721 Адрес электронной почты: insulators.energy@siemens.com

Отдел передачи электроэнергии Номер заказа: E50001-G630-A193-X-5600 Отпечатано в Германии Dispo 30002, c4bs No. 7457 fb 3635 471777 WS 02115.

Отпечатано на бумаге, обработанной отбеливателем, не содержащим хлора.

Все права защищены. Упоминаемые в документе торговые знаки являются собственностью Siemens AG, ее филиалов или соответствующих владельцев.

Содержание может быть изменено без предварительного уведомления. Информация в настоящем документе содержит общее описание имеющихся технических функций, которые могут быть действительны не во всех случаях. Требуемые технические функции, соответственно, должны указываться